Health care of Kyrgyzstan
Zdravoohraneniye Kyrgyzstana

ISSN 1694-8068 (Print)

ISSN 1694-805X (Online)

Evaluation of potential risks of air pollution by asbestos fibres

Evaluation of potential risks of air pollution by asbestos fibres
Полный текст  

Abstract

Introduction. Asbestos is a general commercial term for two of the many existing groups of natural mineral fibres: the serpentinite group (chrysotile) and the amphibole group (actinolite, amosite, anthophyllite, crocidolite and tremolite), which have common applications. Long-term exposure to asbes tos-containing dust generated during asbestos mining and enrichment, and during the production, use and disposal of asbestos-containing materials in uncontrolled conditions increases the risk of developing a number of serious diseases. An essential role in assessing the actual risks is played by assessing the potential for exposure, identifying the actual exposure to asbestos fibres, the type of asbestos and an objective assessment of the intensity of exposure. The most widely used methods for solving these problems are the determination of number concentrations of fibres in the air using optical phase-contrast microscopy, scanning and transmission microscopy with energy-dis persive microanalysis of the fibre type. The purpose of the work - analysis of dust samples settled on horizontal surfaces to identify the potential for air pollution by fibrous particles. Materials and methods. In the summer of 2024, a total of 28 dust samples were taken from horizontal surfaces in the cities of Bishkek (22 samples) and Kant (6 samples). Dust samples were examined by scanning electron microscopy (SEM) with microanalysis of the mineral composition of the samples, and by energy-dispersive X-ray spectroscopy. Results and discussion. The SEM method made it possible to analyze the samples in detail and conduct a mineralogical analysis of each of the objects identified during the study. In five dust samples - two (Bishkek) and three (Kant) fibers of chrysotile asbestos were found in a concentration of more than 0.01%. The chrysotile asbestos fibers were in a state bound to the cement matrix. No asbestos fibers of the amphibole group were detected or their content was less than 0.01%. In seven samples from Bishkek and three samples from Kant, man-made mineral fibers (MMF) were found, with dimensional characteristics close to the definition of “respirable fiber”. Conclusion. Air pollution monitoring methods are quite expensive, labor intensive and require highly qualified personnel. At the same time, only regular monitoring can provide an objective picture. One-time events to collect individual air samples cannot serve as a reliable source of information on the potential for exposure, the presence or absence of exposure to asbestos fibres (and/or other natural and man-made mineral fibres that can also have a negative influence on human health), the type of fibres them, and the inten sity of exposure. Thus, in the absence of data from previously performed regular monitoring of air pollution in the working area and/or atmospheric air of populated areas with fibrous particles, determining the content of asbe stos fibres and other natural and man-made mineral fibers settled from the air in samples of dust settled on horizontal surfaces (e.g., on roadsides or other surfaces) is a significant, relatively low-labor and inexpensive tool for identifying the potential for air pollution with fibrous particles, and allows decision making whether regular monitoring is necessary or not. In this regard, the purpose of this study was to collect and analyze samples of dust settled on horizontal surfaces in two cities.

About the authors

Ковалевский Евгений Вильевич, доктор медицинских наук, профессор Российской академии наук, главный научный сотрудник Федерального государственного бюджетного научного учреждения «Научно-исследовательский институт медицины труда имени академика Н.Ф. Измерова» (ФГБНУ «НИИ МТ»), Москва, Российская Федерация

Шаршенова Айнаш Акыновна, доктор медицинских наук, профессор, Международная высшая школа медицины (МВШМ), Бишкек, Кыргызская Республика

Отаров Ертай Жалгаспаевич, доктор медицинских наук, Уполномоченное лицо Некоммерческого акционерного общества «Национальный центр гигиены труда и профессиональных заболеваний», (НАО «НЦГТиПЗ»), Караганда, Республика Казахстан

Касымбеков Жаркынбек Орозбекович, доктор медицинских наук, директор Национального института общественного здоровья при Министерстве здравоохранения Кыргызской Республики (НИОЗ МЗ КР), Бишкек, Кыргызская Республика

Цхомария Ираклий Мамукович, научный сотрудник Федерального государственного бюджетного научного учреждения «Научно-исследовательский институт медицины труда имени академика Н.Ф. Измерова» (ФГБНУ «НИИ МТ»), Москва, Российская Федерация

Kovalevskiy Evgeny Viliyevich, Doctor of Medical Sciences, Professor of the Russian Academy of Sciences, Leading Researcher of the Federal State Budgetary Scientific Institution «Izmerov Research Institute of Occupational Health» (FSBSI «IRIOH»), Moscow, Russia

Sharshenova Ainash Akynovna, Doctor of Medical Sciences, Professor, International Higher School of Medicine (IHSM), Bishkek, Kyrgyz Republic

Otarov Yertay Zhalgaspayevich, Doctor of Medical Sciences, Authorized person of the  non-commercial joint-stock company «National Center of Labour Hygiene and Occupational Diseases» (NCJSC “NCLHOD”), Karaganda

Kasymbekov Zharkynbek Orozbekovish, Doctor of Medical Sciences, Director of the National Institute of Public Health under the Ministry of Health of the Kyrgyz Republic (NIPH MH KR), Bishkek, Kyrgyz Republic

Tshomariia Iraklii Mamukovich, Researcher, Federal State Budgetary Scientific Institution «Izmerov Research Institute of Occupational Health» (FSBSI «IRIOH»), Moscow, Russia

Ковалевский Евгений Вильевич,  медицина илимдеринин доктору, Россия илимдер академиясынын профессору, «Н. Ф. Измеров атындагы Эмгек медицинасы илимий изилдөө институту» Федералдык мамлекеттик бюджеттик илимий мекемесинин башкы илимий кызматкери («ЭМ ИИИ» ФМБИМ),  Москва, Россия Федерациясы

Шаршенова Айнаш Акыновна,  медицина илимдеринин доктору, профессор, Эл аралык жогорку медицина мектеби (ЭЖММ), Бишкек, Кыргыз Республикасы

 Отаров Ертай Жалгаспаевич, медицина илимдеринин доктору,  «Эмгек гигиенасы жана кесиптик оорулар Улуттук борбору» Коммерциялык эмес акционердик коомунун ыйгарым укуктуу адамы («ЭГжКОУБ» КэАК), Караганда, Казакстан Республикасы

 Касымбеков Жаркынбек Орозбекович,  медицина илимдеринин доктору, Кыргыз Республикасынын Саламаттык сактоо Министрлигине караштуу Коомдук саламаттык сактоо Улуттук институтунун директору (КР ССМ КССУИ)

 Цхомария Иракилий Мамукович,  «Н. Ф. Измеров атындагы Эмгек медицинасы илимий изилдөө институту» Федералдык мамлекеттик бюджеттик илимий мекемесинин илимий кызматкери («ЭМ ИИИ» ФМБИМ),  Москва, Россия Федерациясы

References

1. Измеров Н. Ф. Программа Всемирной организации здравоохранения и международной организации труда  по элиминации асбестообусловленных заболеваний. Медицина труда и промышленная экология. 2008. №3. С. 1-8. [Izmerov N. F. Program of the World Health Organization and the International Labor Organization for the elimination of asbestos-related  diseases. Russian Journal of Occupational Health and Industrial Ecology. 2008. №3. P. 1-8.] Available from:
https://cyberleninka.ru/article/n/programma-vsemirnoy-organizatsii-zdravoohraneniya-i-mezhdunarodnoy-organizatsii-truda-po-eliminatsii-asbestoobuslovlennyh (accessed December 27, 2024)
2. Ковалевский Е.В. Оценка содержания природных и искусственных минеральных волокнистых частиц в воздухе  
объектов непроизводственного назначения. Медицина труда и промышленная экология. 2004. № . С. 10-16.  [Kovalevskiy E.V. Assessment of the content of natural and artificial mineral fibrous particles in the air of non-industrial facilities.  Russian Journal of Occupational Health and Industrial Ecology. 2004. № 1. P. 10-16. ] Available from: https://elibrary.ru/item.asp?id=17633508 (accessed December 27, 2024)
3. Семененя И. Н., Переверзев В. А. Профессиональные злокачественные новообразования. Военная медицина. 2023. №
3 (68). С.95-110. DOI 10.51922/2074-5044.2023.3.95. EDN QADIYC. [Semenenya I. N., Pereverzev V. A. Occupational  malignant tumors. Military Medicine. 2023. № 3(68). С. 95-110. ] Available from: https://www.bsmu.by/upload/docs/militarymedicine/2023-3/16.pdf (accessed December 27, 2024)
4. Berman D.W., Crump K.S. A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type. Crit.  
Rev.Toxicol. 2008. Vol.38. Suppl 1. P.49-73. doi: 10.1080/10408440802273156. PMID: 18686078. Available from:
https://www.tandfonline.com/doi/full/10.1080/10408440802273156 (accessed December 27, 2024)
5. Cherrie J.W., van Tongeren M., Kromhout H. Estimating occupational disease burden: a way forward. Ann. Work. Expo.  
Health. 024. Vol. 8 (Aug). № 68(7). P. 673-677. doi: 10.1093/annweh/wxae040. PMID: 38768378. Available from: https://academic.oup.com/annweh/article-abstract/68/7/673/7676727?redirectedFrom=fulltext&login=false (accessed December 27, 2024)
6. Clewell R.A., Thompson C.M., Clewell H.J. 3rd. Dose-dependence of chemical carcinogenicity: Biological mechanisms  
for thresholds and implications for risk assessment. Chem. Biol. Interact. 2019. Mar 1. Vol.301. P.112-127. doi: 10.1016/j.cbi.  2019.01.025. PMID: 30763550. Available from: https://www.sciencedirect.com/science/article/pii/S0009279718314467?via%3Dihub (accessed December 27, 2024)
7. Coggon D. Estimating population burdens or occupational disease. Scand. J. Work Environ. Health. 2022. Vol. 48. № 2. P 
83-85. https://doi.org/10.5271/sjweh.4007 Available from: https://www.sjweh.fi/article/4007 (accessed December 27, 2024)
8. Donaldson K., Murphy F.A., Duffin R., Poland C.A. Asbestos, carbon nanotubes and the pleural mesothelium: a review  
of  the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Toxicol. 2010. Mar. Vol.22. 7:5. doi:10.1186/1743-8977-7-5. PMID: 20307263. PMCID: PMC2857820. Available from: https://particle and fibretoxicology.biomedcentral.com/articles/10.1186/1743-8977-7-5#citeas (accessed December 27, 2024)
9. Hodgson J.T., Darnton A. The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure. Ann.  
Occup. Hyg. 2000. Dec. Vol. 44(8). P.565-601. PMID: 11108782. Available from: https://academic.oup.com/annweh/article-abstract /44/8/565/127506?redirectedFrom=PDF&login=false (accessed December 27, 2024)
10. Khadem M., Somea M.S., Hassankhani H., Heravizadeha O. R. Joint Iranian-Russian studies of airborne asbestos  
concentrations in Tehran, Iran. Atmospheric Environment. 2018. Aug 1. vol.186. 2017. P. 9-17. Available from: https://www.sciencedirect.com/science/article/abs/pii/S135223101830325X (accessed December 27, 2024)
11. Kromhout H., Cherrie J.W., van Tonqeren M. Letter to the editor // Environ Int. 2023. Vol.179(Sep):108107.
https://doi.org/10.1016/j.envint.2023.108107 Available from:
https://www.sciencedirect.com/science/article/pii/S016041202300380X?via%3Dihub (accessed December 27, 2024)
12. Lee R.J., Van Orden D.R. Airborne asbestos in buildings. Regul. Toxicol. Pharmacol. 2008. Mar. Vol.50(2). P.218-25. doi:
10.1016/j.yrtph.2007.10.005. PMID: 18006126. Available from: https://www.sciencedirect.com/science/article/abs/pii/ S0273230
007001535?via%3Dihub (accessed December 27, 2024)
13. Stone R. No meeting of the minds on asbestos. Science. 1991. Nov 15. Vol. 254(5034). P.928-31. doi:10.1126/science. 
1948074. PMID: 1948074. Available from: https://www.science.org/doi/10.1126/science.1948074 (accessed December 27, 2024)

14. Toxicological Profile for Asbestos. 2001. Agency for Toxic Substances and Disease Registry of the U.S. Department of  Health and Human Services Centers for Disease Control. Available from: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=30&tid=4 (accessed December 27, 2024)
15. Williams R.A. Economic benefit-cost implications of the LNT model. Chem. Biol. Interact. 2019. Mar 1. Vol.301. P.141-
145.doi: 10.1016/j.cbi.2019.01.028. PMID: 30763554. Available from: https://www.sciencedirect.com/science/ article/pii/S000927
9719300468?via%3Dihub (accessed December 27, 2024)
16. Практическое руководство Международной организации труда «Безопасность при синтетических  
стекловидных волокон в качестве изоляционного материала (стекловата, камневата, шлаковата)» ( МОТ, Женева, Швейцария, 2001; Русский перевод – Москва, 2001) / ILOSafetyintheuseofsyntheticvitreousfibreinsulationwools (glasswool, rockwool, slagwool). ILO Geneva, International Labour Office, 2001.Code of practice, occupational safety, occupational health, synthetic organic fibres. Available from: https://www.ilo.org/resource/safety-use-synthetic-vitreous-fibre-insulation-wools-glass-wool-rock -wool https://www.ilo.org/sites/default/files/wcmsp5/groups/public/%40ed_protect/%40protrav/%40safework/documents/normativeinstrument/wcms_146646.pdf

1. Измеров Н. Ф. Программа Всемирной организации здравоохранения и международной организации труда по элиминации асбестообусловленных заболеваний. Медицина труда и промышленная экология. 2008. №3. С. 1-8.  [Izmerov N. F. Program of the World Health Organization and the International Labor Organization for the elimination of asbestos-related diseases. Russian Journal of Occupational Health and Industrial Ecology. 2008. №3. P. 1-8.] Available from:
https://cyberleninka.ru/article/n/programma-vsemirnoy-organizatsii-zdravoohraneniya-i-mezhdunarodnoy-organizatsii-truda-po
-eliminatsii-asbestoobuslovlennyh (accessed December 27, 2024)
2. Ковалевский Е.В. Оценка содержания природных и искусственных минеральных волокнистых частиц в воздухе
объектов непроизводственного назначения. Медицина труда и промышленная экология. 2004. № . С. 10-16.  [Kovalevskiy E.V. Assessment of the content of natural and artificial mineral fibrous particles in the air of non-industrial facilities. Russian Journal of Occupational Health and Industrial Ecology. 2004. № 1. P. 10-16. ] Available from: https://elibrary.ru/item.asp?id=17633508 (accessed December 27, 2024)
3. Семененя И. Н., Переверзев В. А. Профессиональные злокачественные новообразования. Военная медицина. 2023.
3(68). С.95-110. DOI 10.51922/2074-5044.2023.3.95. EDN QADIYC. [Semenenya I. N., Pereverzev V. A. Occupational malignant tumors. Military Medicine. 2023. № 3(68). С. 95-110. ] Available from: https://www.bsmu.by/upload/docs/militarymedicine/2023-3/16.pdf (accessed December 27, 2024)
4. Berman D.W., Crump K.S. A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type. Crit.  
Rev.Toxicol. 2008. Vol.38. Suppl 1. P.49-73. doi: 10.1080/10408440802273156. PMID: 18686078. Available from:
https://www.tandfonline.com/doi/full/10.1080/10408440802273156 (accessed December 27, 2024)
5. Cherrie J.W., van Tongeren M., Kromhout H. Estimating occupational disease burden: a way forward. Ann. Work. Expo.  
Health. 024. Vol. 8 (Aug). № 68(7). P. 673-677. doi: 10.1093/annweh/wxae040. PMID: 38768378. Available from: https://academic.oup.com/annweh/article-abstract/68/7/673/7676727?redirectedFrom=fulltext&login=false (accessed December 27, 2024)
6. Clewell R.A., Thompson C.M., Clewell H.J. 3rd. Dose-dependence of chemical carcinogenicity: Biological mechanisms  
for thresholds and implications for risk assessment. Chem. Biol. Interact. 2019. Mar 1. Vol.301. P.112-127. doi: 10.1016/j.cbi. 2019.01.025. PMID: 30763550. Available from: https://www.sciencedirect.com/science/article/pii/S0009279718314467?via%3Dihub (accessed December 27, 2024)
7. Coggon D. Estimating population burdens or occupational disease. Scand. J. Work Environ. Health. 2022. Vol. 48. № 2.
P. 83-85. https://doi.org/10.5271/sjweh.4007 Available from: https://www.sjweh.fi/article/4007 (accessed December 27, 2024)
8. Donaldson K., Murphy F.A., Duffin R., Poland C.A. Asbestos, carbon nanotubes and the pleural mesothelium: a review  
of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 2010. Mar. Vol.22. 7:5. doi:10.1186/1743-8977-7-5. PMID: 20307263. PMCID: PMC2857820. Available from: https://particle and fibretoxicology.biomedcentral.com/articles/10.1186/1743-8977-7-5#citeas (accessed December 27, 2024)
9. Hodgson J.T., Darnton A. The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure.  
Ann. Occup.Hyg. 2000. Dec. Vol. 44(8). P.565-601. PMID: 11108782. Available from: https://academic.oup.com/annweh/article-abstract /44/8/565/127506?redirectedFrom=PDF&login=false (accessed December 27, 2024)
10. Khadem M., Somea M.S., Hassankhani H., Heravizadeha O. R. Joint Iranian-Russian studies of airborne asbestos  
concentrations in Tehran, Iran. Atmospheric Environment. 2018. Aug 1. vol.186. 2017. P. 9-17. Available from:
https://www.sciencedirect.com/science/article/abs/pii/S135223101830325X (accessed December 27, 2024)
11. Kromhout H., Cherrie J.W., van Tonqeren M. Letter to the editor // Environ Int. 2023. Vol.179(Sep):108107.
https://doi.org/10.1016/j.envint.2023.108107 Available from:
https://www.sciencedirect.com/science/article/pii/S016041202300380X?via%3Dihub (accessed December 27, 2024)
12. Lee R.J., Van Orden D.R. Airborne asbestos in buildings. Regul. Toxicol. Pharmacol. 2008. Mar. Vol.50(2).  
P. 218-25.  doi: 10.1016/j.yrtph.2007.10.005. PMID: 18006126. Available from: https://www.sciencedirect.com/science/article/abs/pii/ S0273230007001535?via%3Dihub (accessed December 27, 2024)
13. Stone R. No meeting of the minds on asbestos. Science. 1991. Nov 15. Vol. 254(5034). P.928-31. doi:10.1126/science. 
1948074. PMID: 1948074. Available from: https://www.science.org/doi/10.1126/science.1948074 (accessed December 27, 2024)

14. Toxicological Profile for Asbestos. 2001. Agency for Toxic Substances and Disease Registry of the U.S. Department of  Health and Human Services Centers for Disease Control. Available from: https://wwwn.cdc.gov/TSP/ToxProfiles/ ToxProfiles.aspx? id=30&tid=4 (accessed December 27, 2024)
15. Williams R.A. Economic benefit-cost implications of the LNT model. Chem. Biol. Interact. 2019. Mar 1. Vol.301. P.
141-145. doi: 10.1016/j.cbi.2019.01.028. PMID: 30763554. Available from: https://www.sciencedirect.com/science/article/pii/S0009279719300468?via%3Dihub (accessed December 27, 2024)
16. Практическое руководство Международной организации труда «Безопасность при использовании синтетических  
стекловидных волокон в качестве изоляционного материала (стекловата, камневата, шлаковата)» (Издание МОТ, Женева, Швейцария, 2001; Русский перевод – Москва, 2001) / ILOSafetyintheuseofsyntheticvitreousfibreinsulationwools (glasswool, rockwool, slagwool). ILO Geneva, International Labour Office, 2001.Code of practice, occupational safety, occupational health, synthetic organic fibres. Available from: https://www.ilo.org/resource/safety-use-synthetic-vitreous-fibre-insulation-wools-
glass-wool-rock-wool. https://www.ilo.org/sites/default/files/wcmsp5/groups/public/%40ed_protect/%40protrav/%40safework/
documents/normativeinstrument/wcms_146646.pdf

1. Измеров Н. Ф. Программа Всемирной организации здравоохранения и международной организации  труда по элиминации асбестообусловленных заболеваний. Медицина труда и промышленная экология. 2008. №3. С. 1-8.  [Izmerov N. F. Program of the World Health Organization and the International Labor Organization for the elimination of asbestos-related diseases. Russian Journal of Occupational Health and Industrial Ecology. 2008. №3. P. 1-8.] Available from:
https://cyberleninka.ru/article/n/programma-vsemirnoy-organizatsii-zdravoohraneniya-i-mezhdunarodnoy-organizatsii-truda-po
-eliminatsii-asbestoobuslovlennyh (accessed December 27, 2024)
2. Ковалевский Е.В. Оценка содержания природных и искусственных минеральных волокнистых частиц в воздухе  
объектов непроизводственного назначения. Медицина труда и промышленная экология. 2004. № . С. 10-16.  [Kovalevskiy E.V. Assessment of the content of natural and artificial mineral fibrous particles in the air of non-industrial facilities. Russian Journal
of Occupational Health and Industrial Ecology. 2004. № 1. P. 10-16. ] Available from: https://elibrary.ru/item.asp?id=17633508
(accessed December 27, 2024)
3. Семененя И. Н., Переверзев В. А. Профессиональные злокачественные новообразования. Военная медицина. 2023. № 
3 (68). С.95-110. DOI 10.51922/2074-5044.2023.3.95. EDN QADIYC. [Semenenya I. N., Pereverzev V. A. Occupational  malignant tumors. Military Medicine. 2023. № 3(68). С. 95-110. ] Available from: https://www.bsmu.by/upload/docs/militarymedicine/2023-3/16.pdf (accessed December 27, 2024)
4. Berman D.W., Crump K.S. A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type. Crit.
Rev. Toxicol. 2008. Vol.38. Suppl 1. P.49-73. doi: 10.1080/10408440802273156. PMID: 18686078. Available from:
https://www.tandfonline.com/doi/full/10.1080/10408440802273156 (accessed December 27, 2024)
5. Cherrie J.W., van Tongeren M., Kromhout H. Estimating occupational disease burden: a way forward. Ann. Work. Expo.  
Health. 024. Vol. 8 (Aug). № 68(7). P. 673-677. doi: 10.1093/annweh/wxae040. PMID: 38768378. Available from:  https://academic.oup.com/annweh/article-abstract/68/7/673/7676727?redirectedFrom=fulltext&login=false (accessed December 27, 2024)
6. Clewell R.A., Thompson C.M., Clewell H.J. 3rd. Dose-dependence of chemical carcinogenicity: Biological mechanisms  
for thresholds and implications for risk assessment. Chem. Biol. Interact. 2019. Mar 1. Vol.301. P.112-127. doi: 10.1016/j.cbi. 2019.
01.025. PMID: 30763550. Available from: https://www.sciencedirect.com/science/article/pii/S0009279718314467?via%3Dihub
(accessed December 27, 2024)
7. Coggon D. Estimating population burdens or occupational disease. Scand. J. Work Environ. Health. 2022. Vol. 48. № 2. P. 
83- 85. https://doi.org/10.5271/sjweh.4007 Available from: https://www.sjweh.fi/article/4007 (accessed December 27, 2024)
8. Donaldson K., Murphy F.A., Duffin R., Poland C.A. Asbestos, carbon nanotubes and the pleural mesothelium: a review of  
the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 2010. Mar. Vol.22. 7:5. doi:10.1186/1743-8977-7-5. PMID: 20307263. PMCID: PMC2857820. Available from: https://particle and fibretoxicology.biomedcentral.com/articles/10.1186/1743-8977-7-5#citeas (accessed December 27, 2024)
9. Hodgson J.T., Darnton A. The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure Ann. 
Occup.Hyg. 2000. Dec. Vol. 44(8). P.565-601. PMID: 11108782. Available from: https://academic.oup.com/annweh/article-abstract /44/8/565/127506?redirectedFrom=PDF&login=false (accessed December 27, 2024)
10. Khadem M., Somea M.S., Hassankhani H., Heravizadeha O. R. Joint Iranian-Russian studies of airborne asbestos
oncentrations in Tehran, Iran. Atmospheric Environment. 2018. Aug 1. vol.186. 2017. P. 9-17. Available from:
https://www.sciencedirect.com/science/article/abs/pii/S135223101830325X (accessed December 27, 2024)
11. Kromhout H., Cherrie J.W., van Tonqeren M. Letter to the editor // Environ Int. 2023. Vol.179(Sep):108107.
https://doi.org/10.1016/j.envint.2023.108107 Available from:
https://www.sciencedirect.com/science/article/pii/S016041202300380X?via%3Dihub (accessed December 27, 2024)
12. Lee R.J., Van Orden D.R. Airborne asbestos in buildings. Regul. Toxicol. Pharmacol. 2008. Mar. Vol.50(2). P.218-25.
doi: 10.1016/j.yrtph.2007.10.005. PMID: 18006126. Available from: https://www.sciencedirect.com/science/article/abs/pii/ S0273230007001535?via%3Dihub (accessed December 27, 2024)
13. Stone R. No meeting of the minds on asbestos. Science. 1991. Nov 15. Vol. 254(5034). P.928-31. doi:10.1126/science.
1948074.PMID: 1948074. Available from: https://www.science.org/doi/10.1126/science.1948074 (accessed December 27, 2024)

14. Toxicological Profile for Asbestos. 2001. Agency for Toxic Substances and Disease Registry of the U.S. Department of  Health and Human Services Centers for Disease Control. Available from: https://wwwn.cdc.gov/TSP/ToxProfiles/ ToxProfiles.aspx?
id=30&tid=4 (accessed December 27, 2024)
15. Williams R.A. Economic benefit-cost implications of the LNT model. Chem. Biol. Interact. 2019. Mar 1. Vol.301.
P.141-145.doi: 10.1016/j.cbi.2019.01.028. PMID: 30763554. Available from: https://www.sciencedirect.com/science/ article/pii/S000927
9719300468?via%3Dihub (accessed December 27, 2024)
16. Практическое руководство Международной организации труда «Безопасность при использовании синтетических  
стекловидных волокон в качестве изоляционного материала (стекловата, камневата, шлаковата)» (Издание МОТ,  Женева, Швейцария, 2001; Русский перевод – Москва, 2001) / ILOSafetyintheuseofsyntheticvitreousfibreinsulationwools (glasswool, rockwool, slagwool). ILO Geneva, International Labour Office, 2001.Code of practice, occupational safety, occupational health, synthetic organic fibres. Available from: https://www.ilo.org/resource/safety-use-synthetic-vitreous-fibre-insulation-wools-
glass-wool-rock-wool. https://www.ilo.org/sites/default/files/wcmsp5/groups/public/%40ed_protect/%40protrav/%40safework/
documents/normativeinstrument/wcms_146646.pdf

Для цитирования

Ковалевский Е. В., Шаршенова А.А., Отаров Е.Ж., Касымбеков Ж.О., Цхомария И.М. Оценка потенциальных рисков загрязнения воздуха волокнами асбеста. Научно-практический журнал «Здравоохранение Кыргызстана» 2024, № 4, с.116-125. https://dx.doi.org/10.51350/zdravkg2024.4.12.15.116.125

For citation

Kovalevskiy E.V., Sharshenova A.A., Otarov Y.Zh., Kasymbekov Zh.O., Tshomariia I.M. Evaluation of potential risks  of air pollution by asbestos fibres. Scientific and practical journal “Health care of Kyrgyzstan” 2024, No. 4, p. 116-125. https://dx.doi.org/10.51350/zdravkg2024.4.12.15.116.125

Цитата үчүн

Ковалевский Е. В., Шаршенова А.А., Отаров Е.Ж., Касымбеков Ж.О., Цхомария И.М. Абанын асбест буласы менен булгануусунун потенциалдуу тобокелдиктерин баалоо. "Кыргызстандын саламаттык сактоо" илимий-практикалык журналы 2024, № 4, б. 116-125.  https://dx.doi.org/10.51350/zdravkg2024.4.12.15.116.125

Authors Kovalevskiy E.V., Sharshenova A.A., Otarov Y.Zh, Kasymbekov Zh.O., Tshomariia I.M.
Link doi.org https://dx.doi.org/10.51350/zdravkg2024.4.12.15.116.125
Pages 116-125
Keywords Prevention, Asbestos, Fiber , Dust , Air pollution control , Control methods
Russian
Об авторах

Ковалевский Евгений Вильевич, доктор медицинских наук, профессор Российской академии наук, главный научный сотрудник Федерального государственного бюджетного научного учреждения «Научно-исследовательский институт медицины труда имени академика Н.Ф. Измерова» (ФГБНУ «НИИ МТ»), Москва, Российская Федерация

Шаршенова Айнаш Акыновна, доктор медицинских наук, профессор, Международная высшая школа медицины (МВШМ), Бишкек, Кыргызская Республика

Отаров Ертай Жалгаспаевич, доктор медицинских наук, Уполномоченное лицо Некоммерческого акционерного общества «Национальный центр гигиены труда и профессиональных заболеваний», (НАО «НЦГТиПЗ»), Караганда, Республика Казахстан

Касымбеков Жаркынбек Орозбекович, доктор медицинских наук, директор Национального института общественного здоровья при Министерстве здравоохранения Кыргызской Республики (НИОЗ МЗ КР), Бишкек, Кыргызская Республика

Цхомария Ираклий Мамукович, научный сотрудник Федерального государственного бюджетного научного учреждения «Научно-исследовательский институт медицины труда имени академика Н.Ф. Измерова» (ФГБНУ «НИИ МТ»), Москва, Российская Федерация

Полный текст

PDF (RUS)

Список литературы

1. Измеров Н. Ф. Программа Всемирной организации здравоохранения и международной организации труда  по элиминации асбестообусловленных заболеваний. Медицина труда и промышленная экология. 2008. №3. С. 1-8. [Izmerov N. F. Program of the World Health Organization and the International Labor Organization for the elimination of asbestos-related  diseases. Russian Journal of Occupational Health and Industrial Ecology. 2008. №3. P. 1-8.] Available from:
https://cyberleninka.ru/article/n/programma-vsemirnoy-organizatsii-zdravoohraneniya-i-mezhdunarodnoy-organizatsii-truda-po-eliminatsii-asbestoobuslovlennyh (accessed December 27, 2024)
2. Ковалевский Е.В. Оценка содержания природных и искусственных минеральных волокнистых частиц в воздухе  
объектов непроизводственного назначения. Медицина труда и промышленная экология. 2004. № . С. 10-16.  [Kovalevskiy E.V. Assessment of the content of natural and artificial mineral fibrous particles in the air of non-industrial facilities.  Russian Journal of Occupational Health and Industrial Ecology. 2004. № 1. P. 10-16. ] Available from: https://elibrary.ru/item.asp?id=17633508 (accessed December 27, 2024)
3. Семененя И. Н., Переверзев В. А. Профессиональные злокачественные новообразования. Военная медицина. 2023. №
3 (68). С.95-110. DOI 10.51922/2074-5044.2023.3.95. EDN QADIYC. [Semenenya I. N., Pereverzev V. A. Occupational  malignant tumors. Military Medicine. 2023. № 3(68). С. 95-110. ] Available from: https://www.bsmu.by/upload/docs/militarymedicine/2023-3/16.pdf (accessed December 27, 2024)
4. Berman D.W., Crump K.S. A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type. Crit.  
Rev.Toxicol. 2008. Vol.38. Suppl 1. P.49-73. doi: 10.1080/10408440802273156. PMID: 18686078. Available from:
https://www.tandfonline.com/doi/full/10.1080/10408440802273156 (accessed December 27, 2024)
5. Cherrie J.W., van Tongeren M., Kromhout H. Estimating occupational disease burden: a way forward. Ann. Work. Expo.  
Health. 024. Vol. 8 (Aug). № 68(7). P. 673-677. doi: 10.1093/annweh/wxae040. PMID: 38768378. Available from: https://academic.oup.com/annweh/article-abstract/68/7/673/7676727?redirectedFrom=fulltext&login=false (accessed December 27, 2024)
6. Clewell R.A., Thompson C.M., Clewell H.J. 3rd. Dose-dependence of chemical carcinogenicity: Biological mechanisms  
for thresholds and implications for risk assessment. Chem. Biol. Interact. 2019. Mar 1. Vol.301. P.112-127. doi: 10.1016/j.cbi.  2019.01.025. PMID: 30763550. Available from: https://www.sciencedirect.com/science/article/pii/S0009279718314467?via%3Dihub (accessed December 27, 2024)
7. Coggon D. Estimating population burdens or occupational disease. Scand. J. Work Environ. Health. 2022. Vol. 48. № 2. P 
83-85. https://doi.org/10.5271/sjweh.4007 Available from: https://www.sjweh.fi/article/4007 (accessed December 27, 2024)
8. Donaldson K., Murphy F.A., Duffin R., Poland C.A. Asbestos, carbon nanotubes and the pleural mesothelium: a review  
of  the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Toxicol. 2010. Mar. Vol.22. 7:5. doi:10.1186/1743-8977-7-5. PMID: 20307263. PMCID: PMC2857820. Available from: https://particle and fibretoxicology.biomedcentral.com/articles/10.1186/1743-8977-7-5#citeas (accessed December 27, 2024)
9. Hodgson J.T., Darnton A. The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure. Ann.  
Occup. Hyg. 2000. Dec. Vol. 44(8). P.565-601. PMID: 11108782. Available from: https://academic.oup.com/annweh/article-abstract /44/8/565/127506?redirectedFrom=PDF&login=false (accessed December 27, 2024)
10. Khadem M., Somea M.S., Hassankhani H., Heravizadeha O. R. Joint Iranian-Russian studies of airborne asbestos  
concentrations in Tehran, Iran. Atmospheric Environment. 2018. Aug 1. vol.186. 2017. P. 9-17. Available from: https://www.sciencedirect.com/science/article/abs/pii/S135223101830325X (accessed December 27, 2024)
11. Kromhout H., Cherrie J.W., van Tonqeren M. Letter to the editor // Environ Int. 2023. Vol.179(Sep):108107.
https://doi.org/10.1016/j.envint.2023.108107 Available from:
https://www.sciencedirect.com/science/article/pii/S016041202300380X?via%3Dihub (accessed December 27, 2024)
12. Lee R.J., Van Orden D.R. Airborne asbestos in buildings. Regul. Toxicol. Pharmacol. 2008. Mar. Vol.50(2). P.218-25. doi:
10.1016/j.yrtph.2007.10.005. PMID: 18006126. Available from: https://www.sciencedirect.com/science/article/abs/pii/ S0273230
007001535?via%3Dihub (accessed December 27, 2024)
13. Stone R. No meeting of the minds on asbestos. Science. 1991. Nov 15. Vol. 254(5034). P.928-31. doi:10.1126/science. 
1948074. PMID: 1948074. Available from: https://www.science.org/doi/10.1126/science.1948074 (accessed December 27, 2024)

14. Toxicological Profile for Asbestos. 2001. Agency for Toxic Substances and Disease Registry of the U.S. Department of  Health and Human Services Centers for Disease Control. Available from: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=30&tid=4 (accessed December 27, 2024)
15. Williams R.A. Economic benefit-cost implications of the LNT model. Chem. Biol. Interact. 2019. Mar 1. Vol.301. P.141-
145.doi: 10.1016/j.cbi.2019.01.028. PMID: 30763554. Available from: https://www.sciencedirect.com/science/ article/pii/S000927
9719300468?via%3Dihub (accessed December 27, 2024)
16. Практическое руководство Международной организации труда «Безопасность при синтетических  
стекловидных волокон в качестве изоляционного материала (стекловата, камневата, шлаковата)» ( МОТ, Женева, Швейцария, 2001; Русский перевод – Москва, 2001) / ILOSafetyintheuseofsyntheticvitreousfibreinsulationwools (glasswool, rockwool, slagwool). ILO Geneva, International Labour Office, 2001.Code of practice, occupational safety, occupational health, synthetic organic fibres. Available from: https://www.ilo.org/resource/safety-use-synthetic-vitreous-fibre-insulation-wools-glass-wool-rock -wool https://www.ilo.org/sites/default/files/wcmsp5/groups/public/%40ed_protect/%40protrav/%40safework/documents/normativeinstrument/wcms_146646.pdf

Для цитирования

Ковалевский Е. В., Шаршенова А.А., Отаров Е.Ж., Касымбеков Ж.О., Цхомария И.М. Оценка потенциальных рисков загрязнения воздуха волокнами асбеста. Научно-практический журнал «Здравоохранение Кыргызстана» 2024, № 4, с.116-125. https://dx.doi.org/10.51350/zdravkg2024.4.12.15.116.125

English
About authors

Kovalevskiy Evgeny Viliyevich, Doctor of Medical Sciences, Professor of the Russian Academy of Sciences, Leading Researcher of the Federal State Budgetary Scientific Institution «Izmerov Research Institute of Occupational Health» (FSBSI «IRIOH»), Moscow, Russia

Sharshenova Ainash Akynovna, Doctor of Medical Sciences, Professor, International Higher School of Medicine (IHSM), Bishkek, Kyrgyz Republic

Otarov Yertay Zhalgaspayevich, Doctor of Medical Sciences, Authorized person of the  non-commercial joint-stock company «National Center of Labour Hygiene and Occupational Diseases» (NCJSC “NCLHOD”), Karaganda

Kasymbekov Zharkynbek Orozbekovish, Doctor of Medical Sciences, Director of the National Institute of Public Health under the Ministry of Health of the Kyrgyz Republic (NIPH MH KR), Bishkek, Kyrgyz Republic

Tshomariia Iraklii Mamukovich, Researcher, Federal State Budgetary Scientific Institution «Izmerov Research Institute of Occupational Health» (FSBSI «IRIOH»), Moscow, Russia

References

1. Измеров Н. Ф. Программа Всемирной организации здравоохранения и международной организации труда по элиминации асбестообусловленных заболеваний. Медицина труда и промышленная экология. 2008. №3. С. 1-8.  [Izmerov N. F. Program of the World Health Organization and the International Labor Organization for the elimination of asbestos-related diseases. Russian Journal of Occupational Health and Industrial Ecology. 2008. №3. P. 1-8.] Available from:
https://cyberleninka.ru/article/n/programma-vsemirnoy-organizatsii-zdravoohraneniya-i-mezhdunarodnoy-organizatsii-truda-po
-eliminatsii-asbestoobuslovlennyh (accessed December 27, 2024)
2. Ковалевский Е.В. Оценка содержания природных и искусственных минеральных волокнистых частиц в воздухе
объектов непроизводственного назначения. Медицина труда и промышленная экология. 2004. № . С. 10-16.  [Kovalevskiy E.V. Assessment of the content of natural and artificial mineral fibrous particles in the air of non-industrial facilities. Russian Journal of Occupational Health and Industrial Ecology. 2004. № 1. P. 10-16. ] Available from: https://elibrary.ru/item.asp?id=17633508 (accessed December 27, 2024)
3. Семененя И. Н., Переверзев В. А. Профессиональные злокачественные новообразования. Военная медицина. 2023.
3(68). С.95-110. DOI 10.51922/2074-5044.2023.3.95. EDN QADIYC. [Semenenya I. N., Pereverzev V. A. Occupational malignant tumors. Military Medicine. 2023. № 3(68). С. 95-110. ] Available from: https://www.bsmu.by/upload/docs/militarymedicine/2023-3/16.pdf (accessed December 27, 2024)
4. Berman D.W., Crump K.S. A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type. Crit.  
Rev.Toxicol. 2008. Vol.38. Suppl 1. P.49-73. doi: 10.1080/10408440802273156. PMID: 18686078. Available from:
https://www.tandfonline.com/doi/full/10.1080/10408440802273156 (accessed December 27, 2024)
5. Cherrie J.W., van Tongeren M., Kromhout H. Estimating occupational disease burden: a way forward. Ann. Work. Expo.  
Health. 024. Vol. 8 (Aug). № 68(7). P. 673-677. doi: 10.1093/annweh/wxae040. PMID: 38768378. Available from: https://academic.oup.com/annweh/article-abstract/68/7/673/7676727?redirectedFrom=fulltext&login=false (accessed December 27, 2024)
6. Clewell R.A., Thompson C.M., Clewell H.J. 3rd. Dose-dependence of chemical carcinogenicity: Biological mechanisms  
for thresholds and implications for risk assessment. Chem. Biol. Interact. 2019. Mar 1. Vol.301. P.112-127. doi: 10.1016/j.cbi. 2019.01.025. PMID: 30763550. Available from: https://www.sciencedirect.com/science/article/pii/S0009279718314467?via%3Dihub (accessed December 27, 2024)
7. Coggon D. Estimating population burdens or occupational disease. Scand. J. Work Environ. Health. 2022. Vol. 48. № 2.
P. 83-85. https://doi.org/10.5271/sjweh.4007 Available from: https://www.sjweh.fi/article/4007 (accessed December 27, 2024)
8. Donaldson K., Murphy F.A., Duffin R., Poland C.A. Asbestos, carbon nanotubes and the pleural mesothelium: a review  
of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 2010. Mar. Vol.22. 7:5. doi:10.1186/1743-8977-7-5. PMID: 20307263. PMCID: PMC2857820. Available from: https://particle and fibretoxicology.biomedcentral.com/articles/10.1186/1743-8977-7-5#citeas (accessed December 27, 2024)
9. Hodgson J.T., Darnton A. The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure.  
Ann. Occup.Hyg. 2000. Dec. Vol. 44(8). P.565-601. PMID: 11108782. Available from: https://academic.oup.com/annweh/article-abstract /44/8/565/127506?redirectedFrom=PDF&login=false (accessed December 27, 2024)
10. Khadem M., Somea M.S., Hassankhani H., Heravizadeha O. R. Joint Iranian-Russian studies of airborne asbestos  
concentrations in Tehran, Iran. Atmospheric Environment. 2018. Aug 1. vol.186. 2017. P. 9-17. Available from:
https://www.sciencedirect.com/science/article/abs/pii/S135223101830325X (accessed December 27, 2024)
11. Kromhout H., Cherrie J.W., van Tonqeren M. Letter to the editor // Environ Int. 2023. Vol.179(Sep):108107.
https://doi.org/10.1016/j.envint.2023.108107 Available from:
https://www.sciencedirect.com/science/article/pii/S016041202300380X?via%3Dihub (accessed December 27, 2024)
12. Lee R.J., Van Orden D.R. Airborne asbestos in buildings. Regul. Toxicol. Pharmacol. 2008. Mar. Vol.50(2).  
P. 218-25.  doi: 10.1016/j.yrtph.2007.10.005. PMID: 18006126. Available from: https://www.sciencedirect.com/science/article/abs/pii/ S0273230007001535?via%3Dihub (accessed December 27, 2024)
13. Stone R. No meeting of the minds on asbestos. Science. 1991. Nov 15. Vol. 254(5034). P.928-31. doi:10.1126/science. 
1948074. PMID: 1948074. Available from: https://www.science.org/doi/10.1126/science.1948074 (accessed December 27, 2024)

14. Toxicological Profile for Asbestos. 2001. Agency for Toxic Substances and Disease Registry of the U.S. Department of  Health and Human Services Centers for Disease Control. Available from: https://wwwn.cdc.gov/TSP/ToxProfiles/ ToxProfiles.aspx? id=30&tid=4 (accessed December 27, 2024)
15. Williams R.A. Economic benefit-cost implications of the LNT model. Chem. Biol. Interact. 2019. Mar 1. Vol.301. P.
141-145. doi: 10.1016/j.cbi.2019.01.028. PMID: 30763554. Available from: https://www.sciencedirect.com/science/article/pii/S0009279719300468?via%3Dihub (accessed December 27, 2024)
16. Практическое руководство Международной организации труда «Безопасность при использовании синтетических  
стекловидных волокон в качестве изоляционного материала (стекловата, камневата, шлаковата)» (Издание МОТ, Женева, Швейцария, 2001; Русский перевод – Москва, 2001) / ILOSafetyintheuseofsyntheticvitreousfibreinsulationwools (glasswool, rockwool, slagwool). ILO Geneva, International Labour Office, 2001.Code of practice, occupational safety, occupational health, synthetic organic fibres. Available from: https://www.ilo.org/resource/safety-use-synthetic-vitreous-fibre-insulation-wools-
glass-wool-rock-wool. https://www.ilo.org/sites/default/files/wcmsp5/groups/public/%40ed_protect/%40protrav/%40safework/
documents/normativeinstrument/wcms_146646.pdf

For citation

Kovalevskiy E.V., Sharshenova A.A., Otarov Y.Zh., Kasymbekov Zh.O., Tshomariia I.M. Evaluation of potential risks  of air pollution by asbestos fibres. Scientific and practical journal “Health care of Kyrgyzstan” 2024, No. 4, p. 116-125. https://dx.doi.org/10.51350/zdravkg2024.4.12.15.116.125

Kyrgyz
Авторлор жөнүндө

Ковалевский Евгений Вильевич,  медицина илимдеринин доктору, Россия илимдер академиясынын профессору, «Н. Ф. Измеров атындагы Эмгек медицинасы илимий изилдөө институту» Федералдык мамлекеттик бюджеттик илимий мекемесинин башкы илимий кызматкери («ЭМ ИИИ» ФМБИМ),  Москва, Россия Федерациясы

Шаршенова Айнаш Акыновна,  медицина илимдеринин доктору, профессор, Эл аралык жогорку медицина мектеби (ЭЖММ), Бишкек, Кыргыз Республикасы

 Отаров Ертай Жалгаспаевич, медицина илимдеринин доктору,  «Эмгек гигиенасы жана кесиптик оорулар Улуттук борбору» Коммерциялык эмес акционердик коомунун ыйгарым укуктуу адамы («ЭГжКОУБ» КэАК), Караганда, Казакстан Республикасы

 Касымбеков Жаркынбек Орозбекович,  медицина илимдеринин доктору, Кыргыз Республикасынын Саламаттык сактоо Министрлигине караштуу Коомдук саламаттык сактоо Улуттук институтунун директору (КР ССМ КССУИ)

 Цхомария Иракилий Мамукович,  «Н. Ф. Измеров атындагы Эмгек медицинасы илимий изилдөө институту» Федералдык мамлекеттик бюджеттик илимий мекемесинин илимий кызматкери («ЭМ ИИИ» ФМБИМ),  Москва, Россия Федерациясы

Шилтемелер

1. Измеров Н. Ф. Программа Всемирной организации здравоохранения и международной организации  труда по элиминации асбестообусловленных заболеваний. Медицина труда и промышленная экология. 2008. №3. С. 1-8.  [Izmerov N. F. Program of the World Health Organization and the International Labor Organization for the elimination of asbestos-related diseases. Russian Journal of Occupational Health and Industrial Ecology. 2008. №3. P. 1-8.] Available from:
https://cyberleninka.ru/article/n/programma-vsemirnoy-organizatsii-zdravoohraneniya-i-mezhdunarodnoy-organizatsii-truda-po
-eliminatsii-asbestoobuslovlennyh (accessed December 27, 2024)
2. Ковалевский Е.В. Оценка содержания природных и искусственных минеральных волокнистых частиц в воздухе  
объектов непроизводственного назначения. Медицина труда и промышленная экология. 2004. № . С. 10-16.  [Kovalevskiy E.V. Assessment of the content of natural and artificial mineral fibrous particles in the air of non-industrial facilities. Russian Journal
of Occupational Health and Industrial Ecology. 2004. № 1. P. 10-16. ] Available from: https://elibrary.ru/item.asp?id=17633508
(accessed December 27, 2024)
3. Семененя И. Н., Переверзев В. А. Профессиональные злокачественные новообразования. Военная медицина. 2023. № 
3 (68). С.95-110. DOI 10.51922/2074-5044.2023.3.95. EDN QADIYC. [Semenenya I. N., Pereverzev V. A. Occupational  malignant tumors. Military Medicine. 2023. № 3(68). С. 95-110. ] Available from: https://www.bsmu.by/upload/docs/militarymedicine/2023-3/16.pdf (accessed December 27, 2024)
4. Berman D.W., Crump K.S. A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type. Crit.
Rev. Toxicol. 2008. Vol.38. Suppl 1. P.49-73. doi: 10.1080/10408440802273156. PMID: 18686078. Available from:
https://www.tandfonline.com/doi/full/10.1080/10408440802273156 (accessed December 27, 2024)
5. Cherrie J.W., van Tongeren M., Kromhout H. Estimating occupational disease burden: a way forward. Ann. Work. Expo.  
Health. 024. Vol. 8 (Aug). № 68(7). P. 673-677. doi: 10.1093/annweh/wxae040. PMID: 38768378. Available from:  https://academic.oup.com/annweh/article-abstract/68/7/673/7676727?redirectedFrom=fulltext&login=false (accessed December 27, 2024)
6. Clewell R.A., Thompson C.M., Clewell H.J. 3rd. Dose-dependence of chemical carcinogenicity: Biological mechanisms  
for thresholds and implications for risk assessment. Chem. Biol. Interact. 2019. Mar 1. Vol.301. P.112-127. doi: 10.1016/j.cbi. 2019.
01.025. PMID: 30763550. Available from: https://www.sciencedirect.com/science/article/pii/S0009279718314467?via%3Dihub
(accessed December 27, 2024)
7. Coggon D. Estimating population burdens or occupational disease. Scand. J. Work Environ. Health. 2022. Vol. 48. № 2. P. 
83- 85. https://doi.org/10.5271/sjweh.4007 Available from: https://www.sjweh.fi/article/4007 (accessed December 27, 2024)
8. Donaldson K., Murphy F.A., Duffin R., Poland C.A. Asbestos, carbon nanotubes and the pleural mesothelium: a review of  
the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 2010. Mar. Vol.22. 7:5. doi:10.1186/1743-8977-7-5. PMID: 20307263. PMCID: PMC2857820. Available from: https://particle and fibretoxicology.biomedcentral.com/articles/10.1186/1743-8977-7-5#citeas (accessed December 27, 2024)
9. Hodgson J.T., Darnton A. The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure Ann. 
Occup.Hyg. 2000. Dec. Vol. 44(8). P.565-601. PMID: 11108782. Available from: https://academic.oup.com/annweh/article-abstract /44/8/565/127506?redirectedFrom=PDF&login=false (accessed December 27, 2024)
10. Khadem M., Somea M.S., Hassankhani H., Heravizadeha O. R. Joint Iranian-Russian studies of airborne asbestos
oncentrations in Tehran, Iran. Atmospheric Environment. 2018. Aug 1. vol.186. 2017. P. 9-17. Available from:
https://www.sciencedirect.com/science/article/abs/pii/S135223101830325X (accessed December 27, 2024)
11. Kromhout H., Cherrie J.W., van Tonqeren M. Letter to the editor // Environ Int. 2023. Vol.179(Sep):108107.
https://doi.org/10.1016/j.envint.2023.108107 Available from:
https://www.sciencedirect.com/science/article/pii/S016041202300380X?via%3Dihub (accessed December 27, 2024)
12. Lee R.J., Van Orden D.R. Airborne asbestos in buildings. Regul. Toxicol. Pharmacol. 2008. Mar. Vol.50(2). P.218-25.
doi: 10.1016/j.yrtph.2007.10.005. PMID: 18006126. Available from: https://www.sciencedirect.com/science/article/abs/pii/ S0273230007001535?via%3Dihub (accessed December 27, 2024)
13. Stone R. No meeting of the minds on asbestos. Science. 1991. Nov 15. Vol. 254(5034). P.928-31. doi:10.1126/science.
1948074.PMID: 1948074. Available from: https://www.science.org/doi/10.1126/science.1948074 (accessed December 27, 2024)

14. Toxicological Profile for Asbestos. 2001. Agency for Toxic Substances and Disease Registry of the U.S. Department of  Health and Human Services Centers for Disease Control. Available from: https://wwwn.cdc.gov/TSP/ToxProfiles/ ToxProfiles.aspx?
id=30&tid=4 (accessed December 27, 2024)
15. Williams R.A. Economic benefit-cost implications of the LNT model. Chem. Biol. Interact. 2019. Mar 1. Vol.301.
P.141-145.doi: 10.1016/j.cbi.2019.01.028. PMID: 30763554. Available from: https://www.sciencedirect.com/science/ article/pii/S000927
9719300468?via%3Dihub (accessed December 27, 2024)
16. Практическое руководство Международной организации труда «Безопасность при использовании синтетических  
стекловидных волокон в качестве изоляционного материала (стекловата, камневата, шлаковата)» (Издание МОТ,  Женева, Швейцария, 2001; Русский перевод – Москва, 2001) / ILOSafetyintheuseofsyntheticvitreousfibreinsulationwools (glasswool, rockwool, slagwool). ILO Geneva, International Labour Office, 2001.Code of practice, occupational safety, occupational health, synthetic organic fibres. Available from: https://www.ilo.org/resource/safety-use-synthetic-vitreous-fibre-insulation-wools-
glass-wool-rock-wool. https://www.ilo.org/sites/default/files/wcmsp5/groups/public/%40ed_protect/%40protrav/%40safework/
documents/normativeinstrument/wcms_146646.pdf

Цитата үчүн

Ковалевский Е. В., Шаршенова А.А., Отаров Е.Ж., Касымбеков Ж.О., Цхомария И.М. Абанын асбест буласы менен булгануусунун потенциалдуу тобокелдиктерин баалоо. "Кыргызстандын саламаттык сактоо" илимий-практикалык журналы 2024, № 4, б. 116-125.  https://dx.doi.org/10.51350/zdravkg2024.4.12.15.116.125

Views: 122
Copyright MAXXmarketing GmbH
JoomShopping Download & Support